

KF-A F10(SC)

Particle Filtering Half Masks

FFP2 NR

ABOUT KINGFA

Leading Manufacturer of PPE & Medical Supplies

KINGFA provides customers with PPE whole industry chain services from the upstream production of polypropylene, the midstream production of melt blown material to the downstream production of PPE & medical supplies.

Extensive Product Portfolio

entire supply chain

KINGFA Strengths

KINGFA offers a comprehensive range of OEM services, and can draw on years of experience meeting the specific needs of customers all over the world.

KINGFA is not just a solution provider but also a technological leader. Our technical support is committed to providing our customers with innovative solutions.

KINGFA has built a high-level independent R&D team with more than 800 masters and senior experts, staying at the forefront of technological innovation.

KINGFA has a complete quality management system, certified by ISO 9001 and ISO 13485. We are committed to providing the highest quality standards while maintaining the sustainability of our business.

KINGFA Face Masks Factory

KINGFA has established a vertically integrated supply chain, from the upstream production of polypropylene, the midstream production of melt-blown nonwoven fabric to the downstream production of face masks.

Upstream: Polypropylene

KINGFA invested RMB 10.5billion (\$1.6billion) to construct 1.2 million tons of polypropylene thermoplastic elastomer (PTPE) and innovative polymer modified materials integration project.

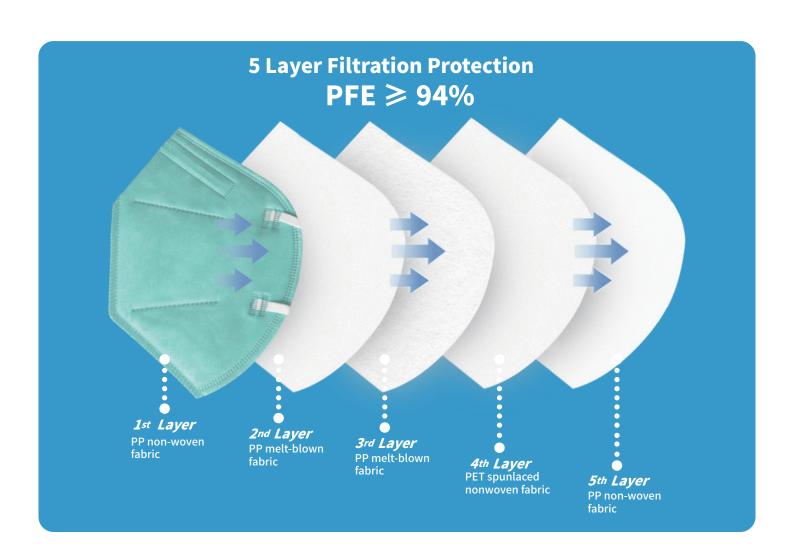
Midstream: Melt Blown Nonwoven Fabric

KINGFA focuses on the development and production of ultra-low airflow resistance & high filtration efficiency melt blown material.

Downstream: PPE&Medical products

KINGFA constructed 100,000 grade purification face masks workshop.400 functional mask production lines with a total daily production capacity of 40,000,000 units.

Professional Design. More Comfortable Protection


3D design (coned front) provides more space (less lip contact)

Extra-soft ear loops eliminate pressure to the ear

Hidden nose clip makes mask more soft and beautiful

Equipped with hooks to free your ears

FFP2 NR Particle Filtering Half Masks

Intended Use:

FFP2 NR particle filtering half masks protect workers from moderate levels of airborne particles including dust, aerosols. These masks effectively filter at least 94% of airborne particles, and have a maximum total inward leakage of 8% by wearer arithmetic means.

	Technical Data Sheet	
Ref. No.	KF-A F10(SC)	
Product Description	Particle Filtering Half Masks	
Standard	EN 149:2001+A1:2009	
Certificate	CE (Module B + Module D)	
Product Classification	FFP2 NR	
Material	Foldable, 5 ply, Ear loops, 3D design 1st Layer: PP non-woven fabric 2nd Layer: PP melt-blown fabric 3rd Layer: PP melt-blown fabric 4th Layer: PET spunlaced nonwoven fabric 5th Layer: PP non-woven fabric	
Color	White/Black/Green	
Free of	Glass fiber, Latex	
Sterilization	Non-sterile	
Shelf Life	3 years	
Performance	 Particle Filtration Efficiency (PFE) ≥ 94% Breathing resistance(Inhalation, 30L/min): ≤ 0.7mbar Breathing resistance(Inhalation, 95L/min): ≤ 2.4mbar Breathing resistance(Exhalation, 160L/min): ≤ 3.0mbar Total inward leakage(TIL): For particle filtering half mask in accordance with manufacture's information, at least 46 out of the 50 individual exercise results for total inward leakage shall be not greater than 11% for FFP2, and in addition, at least 8 out of the 10 individual wearer arithmetic means for the total inward leakage shall be not greater than 8% for FFP2. Flammability: ≤ 5S Dead space: ≤ 1.0% 	

High filtration efficiency

Appendix 2: Summarization of Test Data

Penetration of filter material

Aerosol	Condition	Sample No.	Penetration (%)			
		1	0.487			
	As received	2	0.313			
		3	0.376			
		4	0.405			
Sodium chloride test	Simulated wearing treatment	5	0.413			
		6	0.372			
	Machaniaal atropath / Taranayatı va	7	0.604			
	Mechanical strength +Temperature conditioned	8	0.576			
	conditioned	9	0.548			
		10	0.153			
	As received	11	0.127			
		12	0.135			
		13	0.129			
Paraffin oil test	Simulated wearing treatment	14	0.147			
		15	0.136			
	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16	0.522			
	Mechanical strength +Temperature conditioned	17	0.582			
	conditioned	18	0.567			
Flow conditioning: Single filter: 95.0 L/min						

The particle filtration efficiency is much higher than the standard technical requirements.

Aerosol	Test result	Standard requirements
Sodium chloride test	See the report	≤ 4%
Paraffin oil test	See the report	≤ 4%

Low breathing resistance

Appendix 5: Summarization of Test Data

Breathing resistance (mbar)

					-					_					_		
	Flow roto/L	Flow rate(I/min)		1				2				3					
The same of the sa	min)	Α	В	C	D	E	Α	В	C	D	E	Α	В	C	D	E	
	30	0.4	0.4	0.4	0.4	0.3	0.3	0.4	0.3	0.3	0.4	0.4	0.4	0.4	0.3	0.4	
	IIIIaiaiioii	95	1.5	1.5	1.5	1.5	1.4	1.4	1.4	1.5	1.5	1.5	1.4	1.5	1.4	1.5	1.5
	Exhalation	160	2.2	2.2	2.1	2.2	2.2	2.2	2.2	2.1	2.1	2.2	2.1	2.2	2.2	2.1	2.2
F1 = - 1 = 17 = 2 = 3		4			5				6								
Simulated	Flow rate(I/	min)	Α	В	С	D	E	Α	В	С	D	E	Α	В	С	D	E
wearing	Inhalation	30	0.4	0.3	0.4	0.4	0.3	0.3	0.4	0.4	0.4	0.4	0.3	0.3	0.4	0.4	0.4
treatment	IIIIaialioii	95	1.5	1.4	1.5	1.5	1.4	1.4	1.5	1.5	1.5	1.4	1.5	1.5	1.4	1.5	1.4
	Exhalation	160	2.1	2.1	2.2	2.2	2.2	2.1	2.2	2.2	2.2	2.2	2.1	2.1	2.1	2.2	2.1
	=		7				8				9						
	Flow rate(I/	min)	Α	В	С	D	Е	Α	В	С	D	E	Α	В	С	D	E
Temperature	Inhalation	30	0.3	0.4	0.3	0.3	0.4	0.4	0.3	0.3	0.4	0.3	0.3	0.4	0.4	0.3	0.3
conditioned	IIIIaiallOII	95	1.4	1.4	1.5	1.5	1.4	1.4	1.4	1.5	1.5	1.4	1.4	1.4	1.4	1.4	1.5
	Exhalation	160	2.1	2.2	2.1	2.1	2.2	2.2	2.1	2.1	2.1	2.1	2.1	2.2	2.2	2.1	2.1

A: facing directly ahead; B: facing vertically upwards; C: facing vertically downwards; D: lying on the left side; E: lying on the right side

The breathing resistance performance is much better than the standard technical requirements.

Flow	Test result	Standard requirements
30L/min inhalation	See the report	≤ 0.7mbar
95L/min inhalation	See the report	≤ 2.4mbar
160L/min exhalation	See the report	≤ 3.0mbar

Package Design

Exterior Design

6 pcs/box (1 pcs/bag, 6 bag/box) Size: 14/3.5/12.5cm

6 pcs/box

Carton Design

200 boxes/carton (1200 pcs/carton) Size: 57.5/37/65cm

1200 pcs/carton

Container Loading

(For Reference Only/Without Pallets)

20GP	216 cartons
40GP	432 cartons
40HQ	480 cartons

OEM Services

- Product design and development
- Flexible & timely manufacture
- Quality control and regulatory compliance
- Cost effective with product assurance
- Packaging & shipment
- Technical support

Package Design

Exterior Design

10 pcs/box (10 pcs/bag, 1 bag/box) Size: 14/4/12.1cm

pcs/box

Carton Design

120 boxes/carton (1200 pcs/carton) Size: 57.5/38.8/42cm

1200 pcs/carton

Container Loading

(For Reference Only/Without Pallets)

20GP	312 cartons
40GP	672 cartons
40HQ	720 cartons

OEM Services

- Product design and development
- Flexible & timely manufacture
- Quality control and regulatory compliance
- Cost effective with product assurance
- Packaging & shipment
- Technical support

Package Design

Exterior Design

30 pcs/box (10 pcs/bag, 3 bag/box) Size: 13.5/12/12.1cm

30 pcs/box

Carton Design

40 boxes/carton (1200 pcs/carton) Size: 55.5/38.5/38.3cm

1200 pcs/carton

Container Loading

(For Reference Only/Without Pallets)

20GP	360 cartons
40GP	744 cartons
40HQ	756 cartons

OEM Services

- Product design and development
- Flexible & timely manufacture
- Quality control and regulatory compliance
- Cost effective with product assurance
- Packaging & shipment
- Technical support

KINGFA Global Network

Starting with its first regional corporate office in Guangzhou in 1993, KINGFA has established regional corporate offices in Germany, United States, India, Malaysia. At the same time, we have created a global network by expanding our local sales network. This network allows KINGFA to deeply understand markets around the world, bringing local insight into market dynamics, business cultures and supply chains.

United States

Establishment: Feb 2015

Location: Canton, Michigan, United States

Germany

Establishment: Jan 2016

Location: Wiesbaden, Germany

India

Establishment: May 2013 Location: Chennai, India

Malaysia

Establishment: May 2016

Location: Kuala Lumpur, Malaysia

South China Headquarter

Establishment: Sept 1993

Location: Guangzhou, Guangdong

West China Base

Establishment: Oct 2004 Location: Chengdu, Sichuan

East China Base

Establishment: Oct 2001 Location: Kunshan, Jiangsu

North China Base

Establishment: Nov 2009 Location: Konggang, Tianjin

For more details

Contact your KINGFA representative for more information

GUANGDONG KINGFA SCI. & TECH. CO., LTD.

NO.28, Delong Avenue, Shijiao Town,Qingcheng District, Qingyuan City, Guangdong Province, China

kingtamed@kingta.com

